Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations
نویسندگان
چکیده
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
منابع مشابه
Multiscale complex network of protein conformational fluctuations in single-molecule time series.
Conformational dynamics of proteins can be interpreted as itinerant motions as the protein traverses from one state to another on a complex network in conformational space or, more generally, in state space. Here we present a scheme to extract a multiscale state space network (SSN) from a single-molecule time series. Analysis by this method enables us to lift degeneracy--different physical stat...
متن کاملProbing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy
Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملSingle-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics
This article reviews our efforts in understanding dynamical fluctuations of both conformation and enzymatic reactivity in single biomolecules. The single-molecule approach is shown to be particularly powerful for studies of dispersed kinetics and dynamic disorder. New single-molecule observations have revealed conformational transitions occurring on a broad range of timescales, 100 ms–10 s, off...
متن کاملVariable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.
Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, s...
متن کامل